High Performance Pyrolytic Graphite Heat Spreaders: Near Isotropic Structures and Metallization

Richard J. Lemak

MINTEQ International, Inc. Pyrogenics Group Easton, PA USA

Dr. Robert J. Moskaitis

Dr. David Pickrell

Omega Piezo Technologies, Inc. State College, PA USA

Dr. Adam M. Yocum

Donald Kupp

written permission

Agenda

Background

Metallization

Case Study – Two Dimensional Laser Diode Application

Case Study - Three Dimensional Heat Spreader Applications

- T/R Module
- CTE Analysis

Conclusions

Who Are We?

GLOBAL RESOURCE AND TECHNOLOGY BASED GROWTH COMPANY THAT DEVELOPS, PRODUCES AND MARKETS, SPECIALTY MINERALS, SYNTHETIC MINERAL PRODUCTS, SYSTEMS AND SERVICES.

\$1.1B 2007 Sales MTX NYSE

Refractory Products – One of the World's Leading Developers and Marketers of Mineral-Based Monolithic Refractory and Ceramic materials

Pyrogenics Mission:

Provide engineered carbon based products for key industries requiring innovative material solutions

Largest single source producer of pyrolytic graphite, thin films, and specialty carbon composites Markets – Aerospace, Semiconductor/ Electronics, Medical Imaging, Isothermal Forge, Glass

Leading manufacture of high quality piezoelectric, alumina and specialized thermal management components/systems for thermally constrained circuitry for military applications, as well as alternative energy systems

An Effective Thermal Management Solution is Key to Continued Growth

Widespread growth of smaller packages <u>forcing</u> increased power density for applications found in:

Defense/Military
Commercial Industry

Need performance thermal management solutions for:

- Laser Diodes
- T/R Radar Modules
- LED Lighting
- OLED/COLED
- All High Power Devices

PYROID® HT Pyrolytic Graphite Thermal Management Enabling Material for the Next Decade

MINTEQ International's Pyrogenics Group has Decades of Experience Perfecting the Chemical Vapor Deposition Processing of Pyrolytic Graphite

- High purity > 99.999%
- Single crystalline structure
- Thermal Conductivity
 - •1700 W/mK matching CVD diamond
 - Anisotropic ("Engineered" 2 plane orientation)
- Density: 2.25 g/cc (only 25% of Copper)
- Plate and wafer production
 - > 30 cm wide x 3 meter long
 - Tailored thickness up to 2.5 cm
 - Easily cut, diced and lapped to mirror finish
 - High production, pick/place, capable of integration to volume packaging requirements

"Engineered" Z Orientation

Thermal Conductivity Flash Diffusivity Measurements

Holometrix µFLASH

PYROID® HT Conductivity (20° C)

X-Y Plane 1,700 W/mK

Z Plane 7 W/mK

Standard Pyrolytic Graphite

X-Y Plane 440 W/mK Z Plane 1.7 W/mK

PYROID HT

- Substantial columnar structure
- · High purity with no point defects
- Well aligned, hexagonal atoms
- Single crystalline structure

4X Thermal Conductivity of Copper **25%** Weight of Copper ↑↑↑ Performance/Cost Over Diamond or Copper

PYROID® HT micrograph

100 µm

Key Enabler for Use - Metallization Development

Metallization to PYROID® HT Pyrolytic Graphite must insure an acceptable bond strength

Sebastian Pull Test (semiconductor coating strength measurement)

- ✓ Industrial standard test of adhesion strength
- ✓ Epoxy coated 2.69 mm metal stud bonded to sample
- ✓ Constant strain rate "pull" perpendicular to bonding plane
- √ 3 metallization compositions
- ✓ Compatible tested with solder types (Pb-Sn, Au-Sn, Indium, etc.)

Shear test using MIL STD 883

Shear Test

Key Enabler for Use - Metallization Development

Summary of Sebastian pull test results for three metallization types.

Metallization type	Avg. fracture stress (Mpa)	•
Ti -1000 Å NiCr-1000 Å Au-3000 Å	26	15
Ti -1000 Å Ni-1000 Å Au- 3000 Å	31	14
Ti-1000 Å Pt-1000 Å Au-3000 Å	28	21

Failures in the material

Not in the metallization interface

Key Enabler for Use - Metallization Development

Conclusion:

PYROID® HT metallization bond strength meets or exceeds semiconductor standards

Compatibility and wettability of selected solder types with metallization

- •Au Sn (80Au/20 Sn) Hi temperature
- Ag Sn
- In Sn
- SAC 305
- traditional Sn Pb

Typical Au Sn solder wire Attachment

Two dimensional PYROID® HT Heat Spreaders vs. Copper Laser Diode Application Experiments

Objective:

Measure laser diode temperature and match to 3D Omega Piezo Technologies' finite control volume thermal conduction program

Materials tested and modeled

- 1. Copper-Molybdenum (industry accepted for CTE)
- 2. Copper
- 3. Pyroid® HT Pyrolytic Graphite

Finite control volume computational grid with laser diode attached to the heat spreader end

- Two dimensional heat spreader configuration
- Low conductivity plane across diode
- · High conductivity plane
- Constant heat flux 200 W/cm²
- Copper heat sink temperature 30 °C

Resultant temperature Contours for CuMo vs PYROID® HT Pyrolytic Graphite heat spreaders for a heat flux of 200 W/cm²

Case Study - Two Dimensional Laser Diode RESULTS: 70 °C REDUCTION in T_{junction}

Laser Diode Application Experimental Results

Application:

Laser Diode Power Input 200 W/cm² flux

Resulting interface Temperature reduction Delta $T_{junction} = 70^{\circ} C$

RESULTS: > 50% <u>INCREASE</u> IN POWER OUTPUT

Interface temperature for three heat spreader configurations

30 °C

Case Study - Radar Transmit/Receive (T/R) Module

PYROID HT® Heat Spreaders What is the optimum near isotropic 3D spreader?

Measure die/spreader interface temperature

Grid & temperature contours five bar Pyroid HT® T/R Module

Case Study - Radar Transmit/Receive (T/R) Module

RESULTS: 30° C REDUCTION IN TEMPERATURE

3D PYROID HT® Heat Spreaders

Resultant K = 1350 W/mK isotropic bulk conductivity

Optimum spreader: 160

- 2.0 mm first layer
- 0.5 mm second layer
- 2.5 µ Au/Sn solder

Consider two materials:

Low CTE material in restrained state creates:

- compression in high CTE material High CTE in restrained state creates:
 - tension in low CTE material

Resultant Modulus of Elasticity of material is as important as is CTE

Resultant temperature contours five bar Pyroid HT Pyrolytic Graphite Heat Spreader 150 W/cm² heat flux

Schematic of thermal stress model for two dissimilar materials

High CTE material in restrained state creates:

compression in High CTE material

Low CTE in restrained state creates:

tension in Low CTE material

Resultant governing system equation:

$$\sigma = \frac{(\alpha_A - \alpha_B)\Delta T E_A E_B}{(E_A + E_B)}$$

Assume materials are joined along surface with normal stresses transferred by shear (zero at joint center and along free surfaces)

Properties of die and spreader materials

Material	CTE (1/°C)	E, modulus of elasticity, (GPa)
Silicon	4.68 x 10 ⁻⁶	110.3
PYROID® HT Pyrolytic Graphite	$\begin{array}{c cccc} 0.5 & x & 10^{-6} & \parallel \\ 25 & x & 10^{-6} & \perp & & \\ \end{array}$	< 50
Diamond	1.18 x 10 ⁻⁶	700 - 1200
Copper	16.5 x 10 ⁻⁶	110.3

For 200° C temperature excursion thermal stresses for various die/spreader materials

Resultant governing system equation:

$$\sigma = \frac{(\alpha_A - \alpha_B)\Delta T E_A E_B}{(E_A + E_B)}$$

No damage after numerous thermal cycling RT to 150°C

For 200° C temperature excursion thermal stresses for various die/spreader materials

Die/spreader Materials	Stress, MPa (psi)	
Silicon/Diamond	-71 (-10,260) (die compression)	
Silicon/Copper	130 (18,900) (die tension)	
Silicon/PYROID HT® Pyrolytic Graphite	4.8 (697) (die tension)	
Silicon/PYROID HT® Pyrolytic Graphite	-11 (-1600) (die compression)	

Order magnitude lower than diamond or copper

PYROID HT® Pyrolytic Graphite Options

- ✓ Metallization or Non Metallized Graphite Base
- ✓ Metallization overlay on PYROID® HT Pyrolytic Graphite

Ti/NiCr/Au Ti/Ni/Au Ti/Pt/Au base other material

- Forms a reliable and sealing overlay to allow solder process
- Amenable solders Pb/Sn, SAC 305, In/Sn, Au/Sn, other
- ✓ Mounting options

As is

Metal reinforcing backings

Epoxy/fiberglass reinforcement

✓ Amenable Pick/Place

Portfolio Graphite Heat Spreader Architectures

4" x 4" x 0.013" plate radiator

PYROID® HT Laser diode spreader

Machined HT billet

Three dimensional bonded HT graphite composite

HT sandwich layer

Conclusions

- Intrinsic anisotropy and strength limitations addressed through "engineered" orientation and fabrication approaches
- Optimization tools/models available for layered PYROID® HT Pyrolytic Graphite heat spreader designs and performance analysis
- Elastic Modulus is just as important as CTE to mechanical compatibility between spreader and die materials
- PYROID® HT Pyrolytic Graphite Heat Spreaders are cost effective alternatives to expensive diamond and heavier, low performing copper spreaders

PYROID® HT heat spreader material for

- Wide band gap
- RF and MW
- Insulated Gate Bipolar Transistors (IGBT)
- Power amplifiers
- High-brightness LEDs
- Laser diodes
- Processors, ASICs, other
- Light weight applications
- Confined enclosures

Contact Information

Richard Lemak

General Manager

MINTEQ International Inc.

Pyrogenics Group

640 N. 13th Street

Easton, PA 18042 USA

Tel: 610-250-3398

FAX: 610-250-3325

Email: richard.lemak@minteq.com

Website: www.pyrographite.com

David Pickrell

President/CTO

Omega Piezo Technologies, Inc.

2591 Clyde Avenue

State College, PA 16801 USA

Tel: 814-861-4160

FAX: 814-861-4165

Email: dpickrell@omegapiezo.com

Website: www.omegapiezo.com

MINTEQ® and PYROID® are registered trademarks of Minerals Technologies Inc. or its subsidiaries.

