High Performance Pyrolytic Graphite Composite Heat Spreaders

Richard J. Lemak

MINTEQ International, Inc. Pyrogenics Group Easton, PA USA

Robert J. Moskaitis, Ph.D.

Yoshiro Nogami

Thermo Graphitics Company Osaka, Japan

Katsuhiro Chikuba

IMAPS Advanced Technology Workshop on Thermal Management 2011 Palo Alto, CA USA November 7-9, 2011 Copyright 2011 MINTEQ International – not to be reproduced without written permission

1

The glut of heat dissipation technologies notwithstanding, there is an urgent need for cost-effective, yet optimal solutions to thermal management

"I think this is the start of something really big. Sometimes that first step is the hardest one, and we've just taken it."

Production Scale 3D 'Graphene'

Agenda

Background Pyroid HT Pyrolytic Graphite Case Study: Two Dimensional Laser Diode Composite Structures Thermal Cycling Tests CTE Analysis Application Portfolio Summary

Pyrogenics Mission:

Provide engineered carbon based products for key industries requiring innovative material solutions

Largest single source producer of pyrolytic graphite, thin films, and specialty carbon composites Markets – Aerospace, Semiconductor/Electronics, Medical Imaging, Defense, Isothermal Forge, Glass

Winner of 2011 Top Twenty "Most Innovative Small Business Company Award" from the METI (Japanese Ministry of Economy, Trade and Industry)

4

Thermal Challenges are Driving a Serious Review of Graphite Spreader Material

BUT NOT ALL GRAPHITES ARE THE SAME!

Substantial columnar structure

- High purity with no point defects
- Well aligned, hexagonal atoms
- Single crystalline structure

Approaches theoretical carbon density

Natural Graphite Spreader micrograph

Pyroid[®] HT Pyrolytic Graphite

• High purity (>99.999%)

• Light weight

No porosity

Pyroid® HT Pyrolytic Graphite thermal management material

Features

- High purity > 99.999% , crystalline structure
- Thermal Conductivity
 - 1700 W/m-K X-Y plane
 - 7 W/m-K Z plane
- •Engineered material
- •Density: 2.22 g/cc
- Thickness up to 3 cm
- Machined and prepare to mirror finish
- Metallization process technology

Pyroid® HT Pyrolytic Graphite thermal management material

Tensile Stress

Physical Test Results (x-y plane)

Tensile stress at maximum load

Pyroid HT = 28,900 kPa Natural Graphite = 7,300 kPa

Young's Elastic Modulus

Pyroid HT = 50 GPa Natural Graphite = 8 GPa

Pyroid HT

- 4X Tensile
- 6X Elastic Modulus
- than natural graphite heat spreader material

Pyroid® HT Pyrolytic Graphite Production Process

Various Thermal Conductivity Measurement Methods

Pyroid HT XY plane

Various Thermal Conductivity Measurement Methods

Material Innovations Inc.

In-Plane Thermal Conductivity

Multiple simultaneous thermal conductivity measurements via RTDs over a large area that determine the overall thermal performance of the component rather than assessing only localized values

In-Plane Thermal Conductivity Results, X-Y Direction Thermal Conductivity @ 77°C (1875 W/mK)

IMAPS Advanced Technology Workshop on Thermal Management Palo Alto, CA USA November7-9, 2011 [Copyright 2011 MINTEQ International – not to be reproduced without written permission

10

Pyroid® HT Pyrolytic Graphite Patented Near Isotropic Material

IMAPS Advanced Technology Workshop on Thermal Management Palo Alto, CA USA November7-9, 2011 Copyright 2011 MINTEQ International – not to be reproduced without written permission

11

Metallization Bond Strength Results

ummary of Sebastian pull test results for three metallization type				
Metallization type	Avg. fracture stress (Mpa)	Avg. shear failure load (Kg.)		
Ti -1000 Å NiCr-1000 Å Au-3000 Å	26	15		
Ti -1000 Å Ni-1000 Å Au- 3000 Å	31	14		
Ti-1000 Å Pt-1000 Å Au-3000 Å	28	21		

Compatibility of selected solder types with metallization

Sn (80Au/20 Sn) Au Ag Sn In Sn SAC 305

Failures in the material Not in the metallization interface

Performance Example:

Pyroid HT thermal material test with laser diode

Conclusion 1) Reduction Tjunction temperature of 70° C 2) For constant Tjunction = 100° C power output INCREASES > 50% over CuMo

ANSYS[®] Icepak [®] software provides powerful CFD for electronics thermal management

Copyright 2011 MINTEQ International – not to be reproduced without written permission

Pyroid® HT Pyrolytic Graphite Composite Structures

(patents pending)

Composite structures from pyrolytic graphite bonded to a variety of substrates

Benefits

- Provides adequate bond strength to survive thermal cycles
- Structural stability in demanding applications
- Easily mass produced

Pyroid® HT Pyrolytic Graphite Composite Structures

Pyroid[®] HT pyrolytic graphite plus bonded copper yields integrated thermal management composite material

Composite Structure Thermal Cycling Measurement Testing

Columnar shape samples

Configuration

- ASTM F96 77(2010) Standard Specification for Electronic Grade Alloys
- First and third layer Cu thickness 0.3 mm
- Second layer Pyroid HT thickness 0.3mm
- Test diameter 10mm

Thermal Environmental Equipment:

Espec SH-241 Bench-Top Temperature & Humidity Chamber

Test parameters

Temperature range: $(-40^{\circ}C \text{ to } 150^{\circ}C)$ Heat ramp – 2 hrs Hold time – 2 hrs Cool down ramp – 2 hrs

Thermal Conductivity Measurement Equipment

ULVAC-RIKO TC7000 based on JIS R1611

Specifications

Temperature range 1) R.T. to 1500 °C

Sample size	Standard: 10mm dia. x 1 to 3 mm thick Substrate measurement method: 2.5 x 2.5 x 1 mm thick or less (option) Stepwise heating method: 30mm dia. x 3 to 5 mm thick (option)
Laser output	Nd glass laser (normal oscillation 10 J/pulse or more)
Measurement atmosphere	Vacuum or inert gas
Measurement accuracy	Thermal diffusivity: within \pm 5%, specific heat capacity: \pm 7%

Composite Structure 1000 Cycle Thermal Results

Each measurement value is average of 3 measurements

Before cycles density (g/cm3)	Thermal diffusion (cm2/sec)	Specific heat (J/g • deg)	Thermal conductivity (W/mk)	
3.33	5.022	0.6029	1008	
3.34	5.117	0.5555	949	
3.37	4.880	0.5669	932	No
After 1000 cycles density (g/cm3)	Thermal diffusion (cm2/sec)	Specific heat (J/g • deg)	Thermal conductivity (W/mk)	Thermal Conductivity Degradation
3.32	5.572	0.5551	1023	
3.41	5.364	0.5521	1010	
3.43	4.996	0.5659	970	

19

Pyroid[®] HT Pyrolytic Graphite Cu Composite SEM Section after Thermal Cycling Results

Pyroid[®] HT Pyrolytic Graphite Composite Options Engineered Thermal Performance

IMAPS Advanced Technology Workshop on Thermal Management Palo Alto, CA USA November7-9, 2011 Copyright 2011 MINTEQ International – not to be reproduced without written permission

21

Near Isotropic CTE Stress Analysis:

Modulus of Elasticity is Key Material Property

Material	CTE (1/°C)	E, modulus of elasticity, (GPa)
Silicon	4.68 x 10 ⁻⁶	110.3
PYROID [®] HT Pyrolytic Graphite	-0.5 x 10 ⁻⁶	< 50
Diamond	1.18 x 10 ⁻⁶	700 - 1200
Copper	16.5 x 10 ⁻⁶	110.3

Properties of die and spreader materials

For 200° C temperature excursion thermal stresses for various die/spreader materials

Resultant governing system equation:

$$\sigma = \frac{(\alpha_A - \alpha_B)\Delta T E_A E_B}{(E_A + E_B)}$$

Near Isotropic Pyroid HT Composite CTE Stress Analysis Results

No damage after 1000 thermal cycling -40 to 150°C

For 200° C temperature excursion thermal stresses for various die/spreader materials

Die/spreader Materials	<u>Stress, MPa (psi)</u>	
Silicon/Diamond	-71 (-10,260) (die compression)	
Silicon/Copper	130 (18,900) (die tension)	
Silicon/PYROID HT [®] Pyrolytic Graphite	4.8 (697) (die tension)	Order magnitude lower than
Silicon/PYROID HT [®] Pyrolytic Graphite ⊥	-11 (-1600) (die compression)	diamond or copper

Pyroid HT/Cu = 50 MPa tension

Examples of Pyroid[®] HT Pyrolytic Graphite Product Application Portfolio

Conclusions

- Optimization Models available for "<u>engineered" orientation</u> Pyroid[®] HT Pyrolytic Graphite heat spreader designs
- Pyrolytic Graphite <u>Composite Structures</u> provide additional thermal management design freedom
- Elastic Modulus is just as important as CTE to mechanical compatibility between spreader and dissimilar materials
- Pyroid[®] HT Pyrolytic Graphite Heat Spreaders and Composites provide exceptional thermal performance and are a cost effective alternatives to other heat spreaders

Contact Information

Robert J. Moskaitis, Ph.D. Technical Director MINTEQ International Inc. Pyrogenics Group 640 N. 13th Street Easton, PA 18042 USA Tel: 610-250-3349/3398 FAX: 610-250-3325 Email: robert.moskaitis@minteq.com

Website: www.pyrographite.com

Yoshiro Nogami CEO Thermo Graphitics Company. Shimaya Business Incubator #205 4-2-7 Shimaya, Konohana-Ku Osaka, 554-0024 JAPAN Tel: 81-6-6131-5007 FAX: 81-6-6131-5009 Email: nogami@thermo-graphitics.com

Website: www.thermographitics.com

MINTEQ® and PYROID® are registered trademarks of Minerals Technologies Inc. or its subsidiaries.

