


# **PYROID<sup>®</sup>** Long Lived Pyrolytic Graphite Stripper Foils



PEP II Courtesy Stanford Linear Accelerator Center



Particle Collisions Courtesy of Brookhaven National Laboratory

| Nuclide | Half-Life | Target                | <b>Nuclear Reaction</b>              |
|---------|-----------|-----------------------|--------------------------------------|
| O-15    | 2 min     | N <sub>2</sub> gas    | <sup>14</sup> N(d,n) <sup>15</sup> O |
| N-13    | 10 min    | water                 | ${}^{16}O(p,\alpha){}^{13}N$         |
| C-11    | 20 min    | N <sub>2</sub> gas    | $^{14}N(p,\alpha)^{11}C$             |
| F-18    | 110 min   | <sup>18</sup> O water | <sup>18</sup> O(p,n) <sup>18</sup> F |

**Typical PET Radionuclides** 

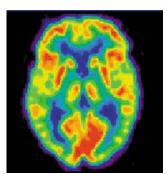
With beam intensity increasing as a result of improved ion sources, particle accelerators need a long lived stripper foil with high heat transfer for optimum beam focus.

PYROID Long Lived Pyrolytic Graphite stripper foils offer exceptional purity (>99,999%), solid crystal composition, with no granular components. Each foil is capable of withstanding temperature greater than 2500 °C.

The material conducts heat like copper and offers exceptional physical strength that actually increases with temperature.

### **Benefits of Pyrolytic Graphite**

Pyrolytic graphite foils offer major customer benefits relative to alternative materials.


#### **PYROID** Foils features:

- Stable at high temperature with a melting point of 3800 °K (higher than any other material)
- Excellent thermal conduction
- Easy to flex due to inherent higher flexural modulus
- Experience slow erosion rates
- Exceptionally consistent quality and performance
- Higher strength than alternative materials

#### **Resulting in:**

- Robust handling characteristics
- Ability to handle vacuum system changes
- Repeatable stripper foil performance
- Reduced ion source rebuild frequency





Courtesy ADERC service of the National Institute on Aging

#### **PYROID Pyrolytic Graphite Properties**

| PROPERTY                   |                         |
|----------------------------|-------------------------|
|                            |                         |
| Density                    | 2.22 g/cc               |
| Flexural Strength @2750 °C | $3,500 \text{ kg/cm}^2$ |
| Compressive Strength       | $1,050 \text{ kg/cm}^2$ |
| Thermal Conductivity       | 345 W/m°K               |
| Scleroscope Hardness       | 103                     |

#### **PYROID Pyrolytic Graphite foils**

| y2      |
|---------|
| <u></u> |
| 2       |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |

### <u>PYROID Pyrolytic</u> <u>Graphite foils last longer</u> <u>than alternative materials</u>

This is important to the radionuclide manufacturing process and especially when dealing with short half life isotopes of less than two hours, since users can not afford a delay in source production.

The exceptional purity of pyrolytic graphite foils translates to superior beam transmission. Since the beam is more consistently focused on the target, cyclotron users typical see a reduction in ion source rebuild frequency.

### Using pyrolytic graphite provides long term security of supply for the radionuclide and PET imaging market.

# For Details or Samples Call, FAX or Email